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The process that led to the natural homochirality of biomolecules Scheme 1

has been a long-standing puzzlélthough several origins of

chirality have been proposed, the enantiomeric excesses inducec Pro-A Ghiral Gatayst ) N’;IN e

by such origins of chirality have usually been very low, except o m,&’”‘
when in conjunction with amplification of chirality by such methods "AD’C Same Source

as asymmetric autocatalysidHowever, a major question remains m%\? — of Chirality Configunton
unsolved: why are.-amino acids, and nab-amino acids, pre- + iPrZn

dominant in nature? The essential point consists of understanding Umchh.cw]+’m.ucm]} g

the factors that determine the absolute configuration of an initially i “oH
formed chiral compound in an environment, including several chiral ,,s,,/ﬁ)k"

sources in competition. To address this issue, we recently carried RI=Ph, Risble -(1R29-DMNES  (Achial Catalyats) R'Me, - DMAE 6a

: : : H T Re R'=Ph, R?=H : {R)-DMAPE 4 R~(CHy), : PIE 6b

out an asymmetric autocatalytic reaction in the presence of two :;W R'oH, R%=Me | (5. DMA S . n:?a, s PE
7 H i i i Hi i1} R : DBAE 6d
competing chiral catalysts. The major configuration of the product e Roe Doke o

corresponds to the catalyst bearing the highest ability to control

the absolute configuration of the product, the highest “asymmetric Table 1. Reversal of Enantioselectivity by Achiral Amino Alcohols
power” in Asymmetric Autocatalysis Initiated Using Chiral and Achiral

. . . . Amino Alcohols
Recently, the use of achiral additives in asymmetric organome-

tallic catalysis was shown to be a promising approach for the Catalytic Mixture _ ProductZ - efrect of the
] ; ; i H chiral achiral yield ee achiral
optimization of the enantioselectivity of chiral cataly3fsin n catalyst catalyst sobent (%) o) catalyst

addition, achiral additives may sometimes reverse the enantiose = (AR25-DVINE3 . % %R

o H : s - none exane .
lectivity of a chiral catalys_ﬁ, although these _cataly_tlc systems 5, (1S2R)-DMNE 3 none hexane 98  98.8Y
generally afford products with moderate enantiomeric excesses. In 3¢ (1R29-DMNE3 DBAE6d hexane 95 95.29 reversal
these rare examples, however, the achiral additives have different 4 (1S2R-DMNE3 DBAE6d hexane 95 94.85) reversal
functional groups from the chiral catalyst or bear no catalytic (IR29-DMNE3 DMAE 6a hexane 94 91.89  reversal

a
Ca

(1R,29-DMNE 3 DOAE 6e hexane 95 96.03 reversal

activity.® 72 (1S2R-DMNE3 none toluene 96 97.8
We here report an unexpected reversal of the enantiofacial 8 (1S2R-DMNE3 DBAE6d toluene 98 92.0R) reversal
selectivity of chiralg-amino alcohol catalysts by a smaller amount 9 (1S2R)-DMNE 3 none di%‘#%’e'r 92 9896
of achiral f-amino alcohol catalysts during the enantioselective 1 (152rR.DMNE3 DBAEG6d dibutyl 96 96.6R) reversal
addition of diisopropylzinci¢Pr,Zn) to pyrimidine-5-carbaldehyde . A ether 04 05|
1, leading to highly enantioenriched pyrimidyl alkar®ivith the ﬂb ES;_BMQEE;‘ O o poane b reversal
opposite absolute configuration to that expected considering the 13 (g.pma 5 none hexane 96 97.R|
absolute configuration of the chiral catalyst (Scheme 1). 14 (S-DMA 5 DBAE6d hexane 92 92.93 reversal
The addition ofi-Pr,Zn to aldehydel using a catalytic amount
(20 mol %) of chiral (R,29- or (152R)-N,N-dimethylnorephedrine aMolar ratio of aldehyde:i-Pr,Zn:chiral catalyst= 1.0:2.0:0.2° Molar

. ratio of aldehyde2:i-Pr.Zn:chiral catalyst:achiral catalyst 1.0:2.0:0.005:
(DMNE 3, >99.5% ee) alone afforde®)- or (9-alkanol2 with  gqgs o202 Y Y

98.7% ee (Table 1, run 1) and 98.8% ee (run 2), respectively. To

evaluate the impact of achiral catalysts, the same reaction was thensuch as R)-2-N,N-(dimethylamino)-1-phenylethanol (DMAPH
catalyzed by a mixture of chiral R2S)-DMNE 3 (0.5 mol %) (runs 11 and 12) orgj-N,N-dimethylalaninol (DMA5) (runs 13
and achiralN,N-dibutylaminoethanol (DBAEd, 19.5 mol %) in and 14).

hexane, and alkan@ with 95.2% ee was obtained, but wigx!) After these surprising preliminary observations, a more detailed
configuration (run 3). The reversal of the sense of enantioselectivity study was carried out. The addition iePr.Zn to 1 was catalyzed
was also observed by using the chiral catalyst with the opposite by a mixture of (52R)-DMNE 3 and DBAE 6d in various

enantiomer, that is, 82R)-DMNE, and achiral DBAE, R)-2 being proportions in toluene. The total concentration of amino alcohols
obtained with 94.8% ee (run 4). Thus, the enantiofacial selectivity (20 mol %), however, was kept constant with respect to the
of the chiral catalyst was reversed by the achiral catadyst concentration of aldehyde. The variation in the enantiomeric excess
This inversion phenomenon seems to be quite general, as it wasand the absolute configuration of the prodRetith the composition
also observed with other achiral amino alcohols, suchNgds of the catalytic mixture are shown in Figure 1S2R)-DMNE 3
dimethylaminoethanol (DMABa) (run 5) andN,N-dioctylamino- alone afforded9)-2 (Table 1, run 7). When the reaction was carried

ethanol (DOAE6Ge€) (run 6), in other solvents such as toluene (runs out in the presence of achiral DBA& and (1S,2R)-DMNE 3 in
7 and 8) and dibutyl ether (runs 9 and 10), or other chiral catalysts, a ratio of 65:35, §-2 was obtained. In sharp contrast, when the
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Figure 1. Asymmetric autocatalysis initiated by a mixture of chiral DMNE
3 and achiral DBAE6d of various ratios in toluene.
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Figure 2. Asymmetric autocatalysis initiated by a catalyst mixture of
(1S2R)-DMNE 3 and various achiraba—e in hexane.

ratio was slightly changed to 70:30, a sudden reversal of the
enantioselectivity occurred anR)¢2 was formed in high enantio-
meric excess. It should be noted that almost symmetrically opposite
results were obtained by using a mixture of chird®,@S)-DMNE
and achiral DBAE (Figure 1).

The most significant reversal of enantioselectivity by achiral

catalysts was observed in hexane (Figure 2). Even a smaller amount

of achiral DBAE 6d than (1S,2R)-DMNE (DBAE:DMNE = 25:
75; i.e, 5 and 15 mol %, respectively) reversed the enantioselectivity
of DMNE to afford R)-2 with high (98.3%) ee. Similarly, the
reversal occurred in the presence of smaller ratios of achiral DOAE
6e or N,N-diethylaminoethanol (DEAESc) than chiral (52R)-
DMNE, respectively, to give the product wiSconfiguration. Thus,
the use of achiralN,N-dialkylaminoethanols associated with a
unique chiral catalyst results in obtaining either enantiomeric form
of the product with high enantiomeric excess by just changing their
ratio.

The exact origin of this reversal of enantioselectivity remains
unclear. However, ®,29-DMNE 3 alone affordsR)-2. As (9-2
is formed by using a mixture of chiral and achiral catalysts, this
clearly shows that the chiral and achiral catalysts interact and form
a new catalytic species that promotes the formation of the opposite
(9-2. Whatever the exact structure of this complex, these observa-
tions prove that a mixed aggregate is catalytically actiBecause
only monomeric species were believed to be catalytically active in
dialkylzinc addition to aldehydes catalyzed #yamino alcohol$d8

our observations may bring some new insights to the mechanism
of the f-amino alcohol catalyzed addition of dialkylzincs to
aldehydes. These reversal phenomena imply that, in the presence
of achiral and chiral catalysts, the achiral one may also have played
an essential role to control the absolute configuration of the initial
product in the chemical evolution of chirality. An explanation of
the observations is currently being investigated.
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